Nitric oxide-induced downregulation of Cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells.
نویسندگان
چکیده
BACKGROUND Nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation and neointima formation after balloon injury. However, the molecular mechanisms underlying NO-mediated growth arrest are poorly understood. In the present study, we examined the effects of the NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) on cell cycle activity in VSMCs. METHODS AND RESULTS Stimulation of quiescent rat VSMCs with serum leads to an increase in cyclin-dependent kinase (cdk)2 kinase activity that correlates with a marked induction of cyclin A protein expression. The addition of SNP or SNAP to VSMC cultures at the time of serum stimulation abrogates the induction of cdk2 activity without suppressing protein levels of cdk2 or cyclin E. These NO donors block serum-stimulated upregulation of cyclin A mRNA and protein and repress the serum induction of cyclin A promoter activity in VSMCs. CONCLUSIONS The addition of the nitric oxide donors SNP or SNAP to mitogen-stimulated VSMCs prevents activation of cdk2, a key regulator of the G1 and S phases of the cell cycle. These NO donors do not affect the expression of cdk2 protein but block the mitogen-induced expression of cyclin A, an activating subunit of cdk2. SNP and SNAP also repress the mitogen-stimulated activation of the cyclin A promoter. These data suggest that the antiproliferative effect of NO on VSMCs results, at least in part, from the repression of cyclin A gene transcription.
منابع مشابه
Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIP1), an inhibitor of neointima formation in the rat carotid artery.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia during atherosclerosis and restenosis, but the endogenous cell cycle regulatory factors underlying VSMC growth in response to arterial injury are not well understood. In the present study, we report that downregulation of cyclin-dependent kinase 2 (cdk2) activity in serum-deprived VSMCs was associa...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملAHEART May 45/5
Sharma, Ram V., Enqing Tan, Shengyun Fang, Milind V. Gurjar, and Ramesh C. Bhalla. NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H1450–H1459, 1999.—The mechanisms of nitric oxide (NO)-mediated inhibition of vascular smooth muscle (VSM) cell proliferation are still obscure. Cyclins A and E ...
متن کاملNOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells.
The mechanisms of nitric oxide (NO)-mediated inhibition of vascular smooth muscle (VSM) cell proliferation are still obscure. Cyclins A and E in association with cyclin-dependent kinase 2 (cdk2) serve as positive regulators for mammalian cell cycle progression through the G1/S checkpoint of the cell cycle and subsequent cell proliferation. Therefore, we have tested the effect of adenovirus-medi...
متن کاملDistinct role of cAMP and cGMP in the cell cycle control of vascular smooth muscle cells: cGMP delays cell cycle transition through suppression of cyclin D1 and cyclin-dependent kinase 4 activation.
cAMP and cGMP are known to suppress vascular smooth muscle cell (SMC) proliferation. In this study, our aim was to delineate the molecular mechanism underlying cAMP and cGMP suppression of cell cycle transition in human SMCs. cAMP inhibits both platelet-derived growth factor-stimulated cyclin-dependent kinase (cdk) 2 and cdk4 activation through upregulation of the cdk2 inhibitor p27(Kip1) and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 97 20 شماره
صفحات -
تاریخ انتشار 1998